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1996-97 RF Research Focused on
Possible Profile Control Techniques

u Attempt to control transport barriers directly

— Usedirect ion Bernstein wave (IBW) heating
(dlaPBX-M)

u Current profile control

— Explore mode conversion CD in DT plasmas:

— Eliminate competition from ‘Li ions (present in
TFTR from machine conditioning techniques)
which was believed to plague earlier
experiments
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Principal Results of these Experiments are:

u Successful IBW wave coupling was found
to be sensitive to poloidal phasing.

u Elimination of ‘Li ions resulted in efficient
mode conversion heating in DT plasmas.

u Localized poloidal flows were observed
with both direct IBW and mode conversion
heating.
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Direct IBW Heating Experiments

u Past experiments on other devices have found
heating and wave coupling to be difficult \

u Two Coupling Regimes Explored
— Electron plasmawave (EPW)
— Cold electrostatic ion cyclotron wave (CESICW)

u Two Antenna Phasings Explored
— Four straps phased (0,0,0,0) or (0,0,p,p)
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Two IBW Launch Scenarios Attempted

Electron Plasma Wave Launch Cold Electrostatic 1on Cyclotron Wave Launch
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Coupling Improved with 0/0/p/p Phasing
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L oading Affected by Poloidal Phasing

Better Core Heating with Lower Loading - indicates edge modes
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Similiar Coupling with EPW and
CESICW
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Measured Edge Density Profile Consistent with
Theory for Good Coupling

u Edge density modification consistent with
Ponderomotive force.

u Independent of phasing
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RF probes indicate comparable wave
amplitude near and far from antenna

® Decay Iinstabilities are observed sporadically
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Amplitude (arb units)

With EPW launch, core reflectometer only
observed wave on high field side

Power Spectrum ® \\/ave Signal on
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|IBW Summary

u Antenna phasing is observed to have the
strongest effect on IBW Heating and
loading

u Parasitic surface wave excitation is a strong
candidate to explain the low efficiencies
observed




Mode Conversion Heating and Current Drive

u D-He? experiments demonstrated that Mode
Conversion of the fast wave to alBW can result
In efficient localized heating and current drive

on and off axis.

u Initia D-T mode conversion experiments did
not behave as expected.

u ‘Li ions present from machine conditioning
were believed to be responsible for this
behavior.




Mode converted IBW will damp on ionsfor

T, > 30 keV

u Modeling with FELICE (M. Brambilla) for T = 30 keV +
25% beam ions, T, =8 keV, B, =5.1T, n, (0O) =4.5x
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DT Mode Conversion was dominated by “Li

Damping
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D-T MC with hot ions affects the core
strongly enough to modify neutron rate

Consistent with a ~5 keV modulation in the ion temperature
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Lower Target lon Temperature leads to
Electron Heating
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D-T mode conversion experiments show
evidence for strong, localized ion heating
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Switchover to ion heating is predicted
for sufficiently hot target plasmas

- 1 I I I I I I
)
: K <
5§ 08 | —~ . ®¢
'g v
(@)
S 04 | ® o -
S ¢ o
o 02 O _
© O v
T Y
O | | | | | |

10 15 20 25 30 35 40 45

Central lon Temperature (keV)

10T

Modeling with the Felice code (M. Brambilla, N.F. 28,5 p.49 1988) PPPL A/



Poloidal Flows can be Driven by RF
Waves

Momentum Balance Equation

o [0 xRT,) + e (v ] = (7 a>+_<(JXB)>

Reynolds neoclassical Charge—separ ation Electromagnetic
Stress damping induced flow correction
Dominant for IBW Normally ignored (small)




Poloidal Flows are Observed for both
Direct IBW and MC Heating

u Magnitude of observed flows are smaller
than those believed to be necessary to
suppress fluctuations:

dV o/dr ~ CJR

u Direction of flowsisin agreement with
simple theory




Sheared Poloidal Flow Develops During
|BW Heating

7
i k]

qu (km/s)




Absence of Sheared Flow In the Absence
of IBW
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Sheared poloidal flow observed near
|IBW Absorption Layer




DV, for no IBW Discharge
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Summary

u Elimination of surface waves by poloidal
phasing improves |IBW heating efficiency

u Elimination of ‘Li ions resulted in
successful DT Mode Conversion Heating

u Poloidal flows were driven with both direct
|BW and Mode Conversion heating
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Radial Electric field derived from Force

Balance
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Change in Poloidal Velocity Observed
during DT Mode Conversion Heating

Mode Conversion layer on low field side of plasmaR ~ 2.95m
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